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Damage spreading in random field systems
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Institute, University of Oregon, Eugene, OR97403, USA

Received 3 June 1997

Abstract. We investigate how a quenched random field influences the damage-spreading
transition in kinetic Ising models. To this end we generalize a recent master equation approach
and derive an effective field theory for damage spreading in random-field systems. This theory
is applied to the Glauber Ising model with a bimodal random-field distribution. We find that
the random field influences the spreading transition by two different mechanisms with opposite
effects. First, the random field favours the same particular direction of the spin variable at
each site in both systems which reduces the damage. Second, the random field suppresses the
magnetization which in turn tends to increase the damage. The competition between these two
effects leads to a rich behaviour.

The central question of damage spreading (DS) [1–3] is how a small perturbation in a
cooperative system changes during the time evolution. This is analogous to the question to
what extent the time evolution depends on the initial conditions, one of the main questions
in non-linear dynamics that lead to the discovery of chaotic behaviour [4]. In order to
study DS the simultaneous time evolution of two replicas of a cooperative system is
considered. The two replicas evolve stochastically under the same noise realization (i.e.
the same random numbers are used in a Monte Carlo procedure). The differences in the
microscopic configurations of the two replicas are then used to characterize the dynamics
and to distinguish regular and chaotic phases, depending on external parameters.

Among the simplest cooperative systems are kinetic Ising models where DS has been
investigated quite intensively within the last years using different dynamical algorithms
such as Glauber [3, 5–8] or heat-bath dynamics [2, 7, 9, 10]. In contrast to the equilibrium
critical behaviour the results of DS do depend on the particular choice of the dynamical
algorithm although recently an attempt has been made to give a more objective definition
of DS [11]. In general, there are two different mechanisms by which damage can spread in
a kinetic Ising model. First, the damage can spreadwithin a single ergodic component (i.e.
a pure state or free-energy valley) of the system. This is the case for Glauber or Metropolis
dynamics. Second, the damage can spread when the system selects one of the free-energy
valleys at random after a quench from high temperatures to below the equilibrium critical
temperature. This is the only mechanism to produce DS in an Ising model with heat-bath
dynamics. This algorithm is thus well suited for exploring the structure of the free-energy
landscape.

In the literature the name DS has been applied not only to the studies discussed above
but also to a different though related type of investigation in which the two systems are
not identical. Instead, one or several spins in one of the copies are permanently fixed
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in one direction. Thus the equilibrium properties of the two replicas deviate from each
other and their microscopic differences can be related to equilibrium correlation functions
[12, 13]. Note that in these works the use of identical noise (i.e. random numbers) for the
two systems is not essential but only a method to reduce the statistical error.

Whereas DS in clean Ising models is comparatively well understood less is known
about disordered models. The influence of random fields has been investigated in a two-
dimensional Ising-like model with Metropolis dynamics giving a reduction of the damage
at high temperatures but an increase at low temperatures [14]. By using the heat-bath
algorithm DS has been used to study the phase-space structure of Ising spin glasses [15–17]
and the corresponding critical behaviour at the DS transition [18].

In this letter we consider the original DS problem, namely the time evolution of two
identical systems and study the influence of a quenched random field on DS in kinetic
Ising models. To this end we generalize the master-equation approach [7, 8] to random-field
systems. The resulting effective-field theory of DS is then applied to the Glauber Ising
model with a bimodal random-field distribution. We study the dependence of the spreading
transition on temperature and field and determine the phase diagram.

We consider two identical Ising models withN sites described by the Hamiltonians
H(1) andH(2) given by

H(n) = − 1
2

∑
ij

Jij S
(n)
i S

(n)
j −

∑
i

ϕiS
(n)
i (1)

where S(n)i is an Ising variable with the values±1 and n = 1, 2 distinguishes the two
replicas.Jij is the (non-random) exchange interaction between the spins. The random-field
valuesϕi are chosen independently from a distributionρ(ϕ). The dynamics of the systems
are given by stochastic mapsS(n)i (t + 1) = F [{S(n)j (t)}], e.g. the Glauber algorithm

S
(n)
i (t + 1) = sgn[v[h(n)i (t)] − 1

2 + S(n)i (t)(ξi(t)− 1
2)] (2)

where the transition probabilityv(x) is given by the usual Glauber expression

v(x) = ex/T /(ex/T + e−x/T ). (3)

Hereh(n)i (t) =
∑
j Jij S

(n)
j (t)+ ϕi is the local magnetic field at sitei and (discretized) time

t in the systemn. ξi(t) ∈ [0, 1) is a random number which is identical for both systems,
andT denotes the temperature.

Within the master equation approach [7, 8] the simultaneous time evolution of the two
replicas is described by the probability distribution

P(ν1, . . . , νN , t) =
〈∑
νi (t)

∏
i

δνi ,νi (t)

〉
(4)

where〈·〉 denotes the average over the noise realizations. The variableνi with the values
++,+−,−+, or −− describes the states of the spin pair (S

(1)
i , S

(2)
i ). The distributionP

fulfils the master equation

d

dt
P (ν1, . . . , νN , t) =−

N∑
i=1

∑
µi 6=νi

P (ν1, . . . , νi, . . . , νN , t)w(νi → µi)

+
N∑
i=1

∑
µi 6=νi

P (ν1, . . . , µi, . . . , νN , t)w(µi → νi). (5)

The transition probabilitiesw(µi → νi) have to be calculated from the properties of the
stochastic mapF which defines the dynamics.
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As in the clean case we derive an effective-field theory by assuming that fluctuations at
different sites are statistically independent which amounts to approximating the distribution
P(ν1, . . . , νN , t) by a product of single-site distributionsPνi (i, t). However, in a disordered
system different sites are not equivalent and thus theirPνi (i, t) are not identical. This is the
main difference to the clean case [7, 8] where the single-site distributions are all identical.
In the following we further assume thatPνi (i, t) is determined by the local valueϕi of
the random-field only,Pνi (i, t) ≡ Pνi (ϕi, t). In general, this is an approximation since
sites with identical random-field values may well have different environments which should
influence the distribution. In the mean-field limit of infinite dimensions over infinite-range
interactions, however, the above assumption becomes exact.

Inserting the decomposition

P(ν1, . . . , νN , t) =
N∏
i=1

Pνi (ϕi, t) (6)

into the master equation (5) gives a system of coupled equations of motion for the single-site
distributions

d

dt
Pν(ϕ) =

∑
µ6=ν

[−Pν(ϕ)W(ν → µ, ϕ)+ Pµ(ϕ)W(µ→ ν, ϕ)] (7)

whereW(µ→ ν, ϕ) is the transition probabilityw averaged over the statesνi of all sites.
We now define the local damaged(ϕ) = P+−(ϕ)+ P−+(ϕ). The total damage is obtained
as the corresponding disorder average

D =
〈

1

2N

N∑
i=1

|S(1)i − S(2)i |
〉
=
∫

dϕ ρ(ϕ)d(ϕ). (8)

The equation of motion of the local damage can be easily determined from (7). Using some
symmetry relations [8] between the transition probabilitiesW , it reads

d

dt
d(ϕ) = [1− d(ϕ)][W(−−→ +−, ϕ)+W(−−→ −+, ϕ)]

+d(ϕ)[−1+W(−+→ +−, ϕ)+W(−+→ −+, ϕ)] (9)

So far the considerations have been rather general, being valid for any (single-site)
dynamic rule and any distribution of the random field. We now apply the formalism to the
Glauber Ising model in the mean-field limitJij = J0/N (for all i and j ). The random-
field distribution remains unspecified so far. In order to determine the spreading point
for infinitesimal initial damage it is sufficient to solve (9) in linear order ind(ϕ). After
calculating the transition probabilitiesW in analogy to the clean case [8] and some further
algebra we obtain

d

dt
d(ϕ) = −|m(ϕ)|d(ϕ)+ J0

T
[1−m2(ϕ)]D. (10)

If we concentrate on DS processes starting in equilibrium conditions the local magnetization

m(ϕ) = tanh[(J0m+ ϕ)/T ] (11)

and the average magnetizationm are time-independent. Equation (10) is very similar to the
corresponding equation (36) of [8] for DS in a homogeneous field. The main difference is
that for random-field systems we have to distinguish between the local damaged(ϕ) which
determines the healing probability (first term in (10)) and the average damageD which
determines the damaging probability of a site (second term in (10)). In a homogeneous



L646 Letter to the Editor

Figure 1. Thermodynamic phase diagram of the mean-field Ising model with bimodal random
field. TCP denotes the tricritical point.

system local and average damage are identical. Consequently, replacingd(ϕ) by D and
m(ϕ) by m in (10) exactly gives the corresponding equation for the homogeneous system.

To proceed further we have to specify the random-field distributionρ(ϕ). As an example
we will discuss the bimodal distribution

ρ(ϕ) = 1
2[δ(ϕ − ϕ0)+ δ(ϕ + ϕ0)] (ϕ0 > 0). (12)

The thermodynamics of the mean-field Ising model with a bimodal random field was
investigated in detail almost 20 years ago [19]. The equation of state takes the form

m = 1

2

[
tanh

(
J0m+ ϕ0

T

)
+ tanh

(
J0m− ϕ0

T

)]
. (13)

The resulting phase diagram is summarized in figure 1. There is a tricritical point at
TTCP = 2J0/3 andϕTCP ≈ 0.439J0. For T > TTCP the ferromagnetic phase transition is of
second order, forT < TTCP it is of first order.

We now turn to our results on DS in this model. Using the notationsd± = d(±ϕ0),
d = (d+, d−) andm± = m(±ϕ0) the equation of motion (10) can be written as

d

dt
d = A · d. (14)

The dynamical matrix is given by

A =
[−|m+| + (1−m2

+)
J0
2T (1−m2

+)
J0
2T

(1−m2
−)

J0
2T −|m−| + (1−m2

−)
J0
2T

]
. (15)

The question whether the damage spreads or heals can be answered by means of the
eigenvalues ofA. If both eigenvalues are negative the damage heals, if at least one of
them is positive the damage spreads.

In the paramagnetic phase we have|m+| = |m−| = tanh(ϕ0/T ). The eigenvalues ofA
are given byλ1 = −m+ + (1−m2

+)J0/T andλ2 = −m+. The corresponding eigenmodes
are the average damageD and the damage differenced+ − d−, respectively. Consequently,
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Figure 2. Lyapunov exponents of the mean- field Glauber Ising model with bimodal random
field. The peak in the curve forϕ0 = 0.4 corresponds to theT wherem− vanishes.

in the paramagnetic phase the Lyapunov exponent which is given by the largest eigenvalue
of A reads

λ = − tanh(ϕ0/T )+ [1− tanh2(ϕ0/T )]J0/T . (16)

Its dependence on temperature and random-field strength is visualized in figure 2. In the
paramagnetic phase the Lyapunov exponent decreases with increasing random fieldϕ0 and
therefore the spreading temperatureTs which is defined byλ = 0 increases. This can be
easily understood from the fact that a random field favours a particular spin direction at
each site. Since this direction is the same for the two replicas the corresponding spins in
the two replicas tend to be parallel which reduces the damage. For random-field strength
ϕ0 > J0 the Lyapunov exponent remains negative for all temperatures and thus the damage
never spreads. Asymptotically forϕ0→ J0 we obtain

T 2
s =

2

3
J 2

0
1

1− ϕ0/J0
. (17)

We note that the criticalϕ0 which completely suppresses DS has the same value as the
corresponding critical homogeneous field [8] although the functional dependence ofTs on
the field is different.

In the ferromagnetic phase|m+| and |m−| are different. In this case the eigenvalues of
A are given by

λ1,2 = 1

2

[
−|m+| − |m−| + J0

2T
(1−m2

+ + 1−m2
−)
]
±
[

1

4
(|m+| − |m−|)2

+ J 2
0

16T 2
(1−m2

+ + 1−m2
−)

2+ J0

4T
(|m+| − |m−|)(m2

+ −m2
−)
]1/2

. (18)

In order to calculate the Lyapunov exponent we first determine the average magnetization
m as a function ofϕ0 and T from the equation of state (13). We then calculatem+ and
m− and insert them into (18). The resulting Lyapunov exponents are presented in figure 2.
In contrast to the paramagnetic phase the spreading temperaturedecreaseswith increasing
random-field strength. At a first glance this seems to contradict the argument given above,
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Figure 3. Damage-spreading phase diagram of the mean-field Glauber Ising model with a
bimodal random field.

namely that a random field favours a particular spin direction and thus reduces the damage.
However, the random field also influences DS via a reduction of the magnetization since the
Lyapunov exponent (18) is determined by the local magnetizations. In the ferromagnetic
phase this effect is stronger than that of the preferred orientation discussed above and thus
Ts is reduced.

By means of (16) and (18) we have determined the spreading temperature as a function
of the random-field strength. The resulting phase diagram of DS in the mean-field Glauber
Ising model with bimodal random field is shown in figure 3. The minimum spreading
temperatureTs,min ≈ 0.438 is obtained when the spreading transition coincides with the
ferromagnetic phase transition which occurs forϕ0 ≈ 0.480 (see figure 2).

To summarize, we investigated the influence of a quenched random field on DS in kinetic
Ising models. We generalized the master-equation approach [7, 8] to random-field systems
and derived an effective field theory for DS. As an example we studied the mean-field
Glauber Ising model with bimodal random field. We found that the random field supports
the spreading of damage in the ferromagnetic phase but hinders it in the paramagnetic phase.
For strong enough field the damage never spreads.

In the concluding paragraph we discuss other random-field distributions and compare
our results with the numerical simulation [14]. The influence of the particular form of
the random-field distribution on DS can be discussed qualitatively by means of (10). This
equation shows that the healing probability is proportional to the local magnetization. This
means that the damage on sites with local magnetization zero cannot heal. Consequently, DS
will be qualitatively different in systems with a continuous random-field distribution since
even for very strong random fields there will be sites with vanishing local magnetization.
Thus damage will spread on a subset of sites with low enough random field. However, with
T → 0 the measure of this subset goes to zero. A detailed investigation of this case will be
published elsewhere [20]. These results also help to understand the numerical simulation
[14] which was carried out for a box distribution. It shows a decrease of the spreading
temperature with increasing random field although the stationary value ofD is reduced at
high temperatures. This is consistent with a reduction ofTs due to a suppression of the
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local magnetization and spreading on a subset of sites at low temperatures. However, a
direct comparison with the mean-field theory is not possible since in the simulations a two-
dimensional system was used which—due to fluctuations—does not have an ordered phase
for any finite random field. Finally, we discuss possible extensions of this work. Besides
a systematic investigation of different random-field distributions the damage equation of
motion should be solved beyond first order in the damage. This will permit the determination
of the stationary damage values and the investigation of the critical behaviour at the
spreading transition. Some studies along these lines are in progress [20].

This work was supported in part by the DFG under grant numbers Vo659/1-1 and SFB393
and by the NSF under grant number DMR-95-10185.
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